Indian Statistical Institute B. Math. Hons. I Year

Semestral Examination 2002-2003

Analysis II

Date:24-04-2003

Total Marks: 50

Instructor: T.S.S.R.K. Rao

- 1. Let f be a continuous function with compact support on R^n . Suppose $f \ge 0$ and $\int_{R^n} f \, dx = 0$. Show that $f \equiv 0$. [5]
- 2. State and prove the change of variable theorem for a flip map on \mathbb{R}^n .

[5]

3. Let $U \subset \mathbb{R}^n$ be an open set and $f: U \to \mathbb{R}^m$ be a differentiable map such that $||f'(x)|| \le 1 \ \forall \ x \in U$. Show that f is uniformly continuous.

[7]

4. Let C be a non-empty closed subset of R^n . Show that there is an $x_0 = (x_0(1), \dots, x_0(n)) \in R^n$ such that

$$\left(\sum_{i=1}^{n} |x_0(i)|^2\right)^{1/2} = \inf_{y \in C} \left(\sum_{i=1}^{n} |y(i)|^2\right)^{1/2}.$$

[8]

- 5. Find and classify the externe values defined by the function $f(x,y) = x^2 + y^2 + x + y + xy$. [6]
- 6. Let $Y \subset \mathbb{R}^n$ and let $L: Y \to \mathbb{R}$ be a uniformly continuous map. Show that there exists a $\tilde{L}: \bar{Y} \to \mathbb{R}$ continuous, such that $\tilde{L} = L$ on Y. [8]
- 7. Let $A \subset \mathbb{R}^n$ be a closed and bounded set and let $f:A \to \mathbb{C}$ be continuous. Show that f is uniformly continuous. [5]
- 8. Let $A \subset \mathbb{R}^n$. Show that A with the metric induced from \mathbb{R}^n is complete iff A is a closed set. [6]